Jump to content
Washington DC Message Boards

Ocean Wave Energy on U.S. Outer Continental Shelf


Guest ANL
 Share

Recommended Posts

Waves are caused by the wind blowing over the surface of the ocean. In many areas of the world, the wind blows with enough consistency and force to provide continuous waves. There is tremendous energy in the ocean waves. Wave power devices extract energy directly from the surface motion of ocean waves or from pressure fluctuations below the surface.

 

Because wind is generated by uneven solar heating, wave energy can be considered a concentrated form of solar energy. Incoming solar radiation levels that are on the order of 100 W/m2 are transferred into waves with power levels that can exceed 1,000 kW/m of wave crest length. The transfer of solar energy to waves is greatest in areas with the strongest wind currents (primarily between 30° and 60° latitude), near the equator with persistent trade winds, and in high altitudes because of polar storms.

 

Wave power varies considerably in different parts of the world, and wave energy can't be harnessed effectively everywhere. Wave-power rich areas of the world include the western coasts of Scotland, northern Canada, southern Africa, Australia, and the northwestern coasts of the United States.

 

Ocean Wave Energy Technologies

 

A variety of technologies have been proposed to capture the energy from waves. Some of the more promising designs are undergoing demonstration testing at commercial scales.

 

Wave technologies have been designed to be installed in nearshore, offshore, and far offshore locations. The OCS Alternative Energy Programmatic EIS is concerned primarily with offshore and far offshore wave technologies. Offshore systems are situated in deep water, typically of more than 40 meters (131 feet).

 

While all wave energy technologies are intended to be installed at or near the water's surface, they differ in their orientation to the waves with which they are interacting and in the manner in which they convert the energy of the waves into other energy forms, usually electricity. The following wave technologies have been the target of recent development.

 

Terminator devices extend perpendicular to the direction of wave travel and capture or reflect the power of the wave. These devices are typically onshore or nearshore; however, floating versions have been designed for offshore applications. The oscillating water column is a form of terminator in which water enters through a subsurface opening into a chamber with air trapped above it. The wave action causes the captured water column to move up and down like a piston to force the air though an opening connected to a turbine.

 

A point absorber is a floating structure with components that move relative to each other due to wave action (e.g., a floating buoy inside a fixed cylinder). The relative motion is used to drive electromechanical or hydraulic energy converters.

 

Environmental Considerations

 

Conversion of wave energy to electrical or other usable forms of energy is generally anticipated to have limited environmental impacts. However, as with any emerging technology, the nature and extent of environmental considerations remain uncertain. The impacts that would potentially occur are also very site specific, depending on physical and ecological factors that vary considerably for potential ocean sites. As large-scale prototypes and commercial facilities are developed, these factors can be expected to be more precisely defined. The following environmental considerations require monitoring.

 

Visual appearance and noise are device-specific, with considerable variability in visible freeboard height and noise generation above and below the water surface. Devices with OWCs and overtopping devices typically have the highest freeboard and are most visible. Offshore devices would require navigation hazard warning devices such as lights, sound signals, radar reflectors, and contrasting day marker painting. However, Coast Guard requirements only require that day markers be visible for 1 nautical mile (1.8 km), and thus offshore device markings would only be seen from shore on exceptionally clear days. The air being drawn in and expelled in OWC devices is likely to be the largest source of above-water noise. Some underwater noise would occur from devices with turbines, hydraulic pumps, and other moving parts. The frequency of the noise may also be a consideration in evaluating noise impacts.

 

Reduction in wave height from wave energy converters could be a consideration in some settings; however, the impact on wave characteristics would generally only be observed 1 to 2 km away from the WEC device in the direction of the wave travel. Thus there should not be a significant onshore impact if the devices were much more than this distance from the shore. None of the devices currently being developed would harvest a large portion of the wave energy, which would leave a relatively calm surface behind the devices. It is estimated that with current projections, a large wave energy facility with a maximum density of devices would cause the reduction in waves to be on the order of 10 to 15%, and this impact would rapidly dissipate within a few kilometers, but leave a slight lessening of waves in the overall vicinity. Little information is available on the impact on sediment transport or on biological communities from a reduction in wave height offshore. An isolated impact, such as reduced wave height for recreational surfers, could possibly result.

 

Marine habitat could be impacted positively or negatively depending on the nature of additional submerged surfaces, above-water platforms, and changes in the seafloor. Artificial above-water surfaces could provide habitat for seals and sea lions or nesting areas for birds. Underwater surfaces of WEC devices would provide substrates for various biological systems, which could be a positive or negative complement to existing natural habitats. With some WEC devices, it may be necessary to control the growth of marine organisms on some surfaces.

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

Loading...
 Share

×
×
  • Create New...